Low Temperature Physics: 41, 382 (2015); https://doi.org/10.1063/1.4921470
Fizika Nizkikh Temperatur: Volume 41, Number 5 (May 2015), p. 490-500    ( to contents , go back )

Two-dimensional solitons in spin nematic states for magnets with isotropic exchange interaction

E.G. Galkina1, B.A. Ivanov2, O.A. Kosmachev3, and Yu.A. Fridman3

1Institute of Physics of the National Academy of Sciences 46 Nauki Ave., Kiev 03028, Ukraine
E-mail: el.galkina@gmail.com

2Institute of Magnetism, 36-b Vernadskogo Blvd., Kyiv 03142, Ukraine

3Таврический национальный университет им. В.И. Вернадского пр. Вернадского, 4, г. Симферополь, 295007, Республика Кр
pos Анотація:

Received November 21, 2014


Two-dimensional topological vortex-like solitons are investigated for spin nematic states for magnets with spins S = 1 and S = 3/2. Either pure-multipole vortices, with quadrupolar order parameter for S = 1 system and octupolar order parameter for S = 3/2 system, or vortices with non-singular core, are realized for different parameters of the system. The vortex core corresponds to the macroscopic region with broken nematic order. The transition to the core-full vortices takes place at some critical value of system parame-ters. Either ferromagnetic vortex with saturated magnetic moment within the core or the vortex with anti-ferromagnetic order are formed. For ferromagnetic vortices, dynamical properties are characterized by the presence of the gyroforce, whereas the dynamics is Lorents-invariant (as for antiferromagnets within the sigma-model) for the vortex with antiferromagnetic core.

PACS: 75.10.Jm Quantized spin models, including quantum spin frustration;
PACS: 05.45.Yv Solitons;
PACS: 03.75.Kk Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow.

Key words: spin nematic, soliton, Landau–Lifshitz equation.

Published online: March 23, 2015

Download 1045286 byte View Contents