Low Temperature Physics: 43, 239 (2017); https://doi.org/10.1063/1.4976634
Fizika Nizkikh Temperatur: Volume 43, Number 2 (February 2017), p. 291-296    ( to contents , go back )

Shubnikov–de Haas oscillations and electronic correlations in the layered organic metal к-(BETS)2 Mn[N(CN)2]3

M.V. Kartsovnik1, V.N. Zverev2,3, W. Biberacher1, S.V. Simonov3, I. Sheikin4, N.D. Kushch5, and E.B. Yagubskii5

1Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften 8 Walther-Meissner-Strasse, Garching D-85748, Germany
E-mail: Mark.Kartsovnik@wmi.badw.de

2Institute of Solid State Physics, Russian Academy of Sciences 2 Academician Ossipyan Str., Chernogolovka 142432, Russia

3Moscow Institute of Physics and Technology, 9 Institutskii per., Dolgoprudny 141700, Russia
4Laboratoire National des Champs Magnétiques Intenses, CNRS, INSA, UJF, UPS, 9 Grenoble Cedex F-38042, France

5Institute of Problems of Chemical Physics, Russian Academy of Sciences 1 ave. Academician Semenov, Chernogolovka 142432, Russia
pos Анотація:

Received August 11, 2016

Abstract

We present magnetoresistance studies of the quasi-two-dimensional organic conductor к-(BETS)2 Mn[N(CN)2]3, where BETS stands for bis(ethylenedithio) tetraselenafulvalene. Under a moderate pressure of 1.4 kbar, required for stabilizing the metallic ground state, Shubnikov–de Haas oscillations, associated with a classical and a magnetic-breakdown cyclotron orbits on the cylindrical Fermi surface, have been found at fields above 10 T. The effective cyclotron masses evaluated from the temperature dependence of the oscillation amplitudes reveal strong renormalization due to many-body interactions. The analysis of the relative strength of the oscillations corresponding to the different orbits and of its dependence on magnetic field suggests an enhanced role of electron-electron interactions on flat parts of the Fermi surface.

PACS: 72.15.Gd Galvanomagnetic and other magnetotransport effects;
PACS: 74.70.Kn Organic superconductors;
PACS: 71.18.+y Fermi surface: calculations and measurements; effective mass, g-factor.

Key words: Shubnikov–de Haas effect, organic superconductors, Fermi surface, correlated electronic systems.

Published online: December 26, 2016

Download 684876 byte View Contents